
S. C H A N D R A S E K H A R  AND N. V. M A D H U S U D A N A  313 

CHANDRASEKHAR, S. & MADHUSUDANA, N. V. (1970). 
Mol. Cryst. Liquid Cryst. 10, 151. 

CHATELAIN, P. (1955). Bull. Soc. Franc. Mindr. Crist. 78,262. 
CHEN, D. R., JAMES, P. G. & LUCKHURST, G. R. (1969). 

Mol. Cryst. Liquid Cryst. 8, 71. 
CmSTYAKOV, I. G. & CI-IAIKOVSKII, V. M. (1968). Soviet 

Phys.-Cryst. 12, 770. 
CHOW, L. C. & MARTIRE, O. E. (1969). J. Phys. Chem. 73, 

1127. 
ELLIOT, G. & GIBSON, J. (1965). Nature, Lond. 205, 995. 
FOEX, M. G. (1933). Trans. Faraday Soc. 29, 958. 
GABRIELLI, I. & VERDINI, L. (1955). Nuovo Cim. II, 526. 
GLARUM, S. H. & MARSHALL, J. H. (1966). J. Chem. Phys. 

44, 2884. 
GRAY, G. W. (1962). Molecular Structure and the Properties 

of Liquid Crystals. London & New York: Academic 
Press. 

GRAY, G. W. (1967). In Liquid Crystals. Edited by G. H. 
BROWN, G. J. DIENES & M. M. LABES, p. 129. New York 
& London: Gordon & Breach. 

HEILMEIER, G. H. (1966). J. Chem. Phys. 44, 644. 
HOYER, W. A. & NOLLE, A. W. (1956). J. Chem. Phys. 24, 

803. 

KAPUSTIN, A. P. (1970). Private communication. 
KAPUSTIN, A. P. & BYKOVA, N. T. (1966). Soviet Phys.- 

Cryst. 11, 297. 
KAPUSTIN, A. P. & VISTIN, L. K. (1965). Kristallografiya, 10, 

118. 
KOSTERIN, E. A. & CHISTYAKOV, I. G. (1968). Soviet Phys.- 

Cryst. 13, 229. 
LIPPMANN, H. (1957). Ann Phys. Lpz. 20, 265. 
MAIER, W. & SAtrPE, A. (1958). Z. Naturforsch. 13a, 564. 
MAIER, W. & SAUPE, A. (1959). Z. Naturforsch. 14a, 882. 
MAIER, W. & SAUPE, A. (1960). Z. Naturforsch. 15a, 287. 
MERWE, A. J. VAN DER (1966a). Z. Phys. 196, 212. 
MERWE, A. J. VAN DER (1966b). Z. Phys. 196, 332. 
ONSAGER, L. (1936). J. Amer. Chem. Soc. 58, 1486. 
SAKEVlCH, N. M. (1967). Izv. Vysshikh Uchebn. Zavedenii, 

Fiz. 10, 52. 
SAUPE, A. (1968). Angew. Chem. Intern. Ed. 7, 97. 
SAUPE, A. & MAIER, W. (1961). Z. Naturforseh. 16a, 816. 
SZlVESSY, G. (1925). Z. Phys. 34, 475. 
SZIVESSY, G. (1926). Z. Phys. 38, 159. 
WILLIAMS, R. (1963). J. Chem. Phys. 39, 384. 
ZADOC-KAHN, J. (1936). Ann. Phys. 11, 455. 
ZWETKOFF, V. (1942). Acta Phys.-chim. URSS. 16, 132. 

Acta Cryst. (1971). A27, 313 

The Application of Non-Systematic Many-Beam Dynamic Effects 
to Structure-Factor Determination 

BY J. QJONNES AND R. HOIER 

Department of  Physics, University of  Oslo, Norway 

(Received 20 July 1970) 

A method for utilizing non-systematic many-beam dynamic effects for determination of accurate rela- 
tions between Fourier potentials is described. The effects which are used can be understood and de- 
scribed in terms of three-beam interactions; although quantitative evaluation is based on more inter- 
acting beams. The effects are most readily observed in Kikuchi patterns; experimental patterns from 
silicon are used as an example. 

Introduction 

It has been shown theoretically and experimentally by 
Uyeda and coworkers (Uyeda, 1968; Watanabe, Uyeda 
& Kogiso, 1968), that the contrast of the second-order 
Kikuchi line may vanish for a particular value of the 
acceleration voltage. This effect is due to variations in 
multiple-beam interactions with electron mass, and can 
be utilized to obtain very accurate relations between 
structure factors, as shown by Watanabe, Uyeda & 
Fukuhara (1968). The method does in a very simple 
way exploit dynamic effects for structure factor deter- 
mination, but is limited to systematic reflexions and is 
dependent on high-voltage electron diffraction. 

In a previous paper the present authors (Gjonnes & 
Hoier, 1969) have studied enhancement and reduction 
of Kikuchi-line contrast, with particular emphasis on 
three-beam interactions. It was shown that a variety of 

contrast anomalies could be explained in terms of 
simple rules derived from three-beam considerations, 
viz, if the product P =  UgUnUg-n of the Fourier poten- 
tials involved is positive, a weak beam, g, which is ex- 
cited simultaneously with a strong beam, h, will be 
reduced in intensity relative to its two-beam value when 
the excitation error, (~, of the strong beam is positive, 
and increased in intensity when (h is negative. When P 
is negative, the effects are reversed with respect to the 
sign of (h. Inclusion of more beams in the calculations 
will not as a rule alter the qualitative features. From 
this viewpoint the Uyeda-Watanabe effect can be seen 
as a special case of reduced intensity in a weak beam 
in a systematic, essentially three beam case, the excita- 
tion error of the strong beam being positive and con- 
stant along the Kikuchi line 2h. 

It was therefore found desirable to investigate inten- 
sity reduction in general, i.e. non-systematic, cases in 
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order to find the conditions for complete vanishing of 
Kikuchi line contrast for a weak beam, and to see 
whether quantitative information about structure fac- 
tors can be gained also from these cases. In addition 
we have studied the use of line splitting at Kikuchi line 
intersections, for structure factor determination. The 
methods are applied to patterns from silicon; appro- 
priate corrections for the presence of further beams are 
introduced in the examples. 

The three-beam case 

It is assumed below that the contrast of a Kikuchi line 
is proFortional to the width of the corresponding gap 
at the dispersion surface. Although no general proof 
for this has been presented, the available calculations 
(see Gjonnes & Hoier, 1969), lend strong support to 
this assumption. 

A set of coupled Kikuchi line intersections, T o, Th, 
Tg and Tin, is shown schematically in Fig. l(a) where 
e.g. T O is the area near the intersection between the two 
weak lines, f~ and ffL and a strong line, h. 

Let us at first discuss the section L parallel to the 
strong line K assuming that the contrast anomalies of the 
weak line g are due to coupling to the strong beam h, 
the coupling to m being negligible in this region. The 
product P is assumed to be positive; consequently, the 
three beam interaction leads to a reduction of the gap 
width between the two lower branches of the three 
beam dispersion surface relative to its two beam value. 
We shall now derive the condition, expressed by the 
excitation errors fig and ~h, for which this gap width is 
reduced to zero as shown in Fig. 1 (b). This corresponds 
to a double root of the third order secular equation for 
the Anpassung ~: 

~ 3 -  ~2(~ h + ~g) + ~[¢',,~'~- U,  ~ -  U ~ -  U L 0  
+ [~ U~ + ~ U ~ -  2U, Uh U~_O=O . 

Here and below the double wavevector 2k is absorbed 
in ~ and ~. By utilizing well known relations between 
the three roots and the coefficients of this equation one 
obtains the following expressions for the excitation 
errors: 

1 
¢~- 2(U~ +~o) [2~°(U~*- U~)+ 2U~UgU,_~ + 2~3o~- Vz] 

(1) 

1 
~',-  2(Uh 2 +~oz ) [-- 2¢o(Ug z -  U~)+ 2UhU, Uh_,+ 2~3o+ l/z] 

where ~o is the double root and 

z=  -4UgZ_h [¢o+ 
UgUh 
U,-h J (~2 + U,2 + Uh2). (2) 

k 

The only physically acceptable solutions are those 
giving real values of ¢ which cart be achieved for only 
one value of Go, namely 

4 o  = _ _  _ _  

in which case z = 0 

and 

v,u  
Ug-h 

v. 
u." (3a) 

Uh U~-h-- U~ (3b) :h- u~" ug_h 

It may be noticed that these values of the excitation 
errors change sign with the product P. 

Equations (3a) and (3b) describe the condition for 
zero contrast. If this position can be located in the 
Kikuchi pattern, and measured with sufficient accu- 
racy, they can therefore be used to obtain relations be- 
tween structure factors. 

The excitation error ~g is related to the position of 
the weak line at the point cfvanishing contrast, whereas 
~'h is given by the position of this point along the weak 
line. One may thus expect the latter to be more useful, 
the displacement of the weak line from its geometrical 
position may be more conveniently utilized at the in- 
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Fig. 1.(a) Schematic drawing of coupled Kikuchi line inter- 
sections, To, Th, Tg and Tin, showing split lines and zero 
weak beam contrast outside a strong band (b) Calculated 
three-beam dispersion surface corresponding to section L 
in (a). g=57T, h=022 and ~o27= 1.03/~,-2. Si. 100 kV. (c) 
Calculated four-beam dispersion surface corresponding to 
section La in (a). g=571, m=515 and h=022. Si. 100 kV. 
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tersection with the strong line, as will be shown below. 
It is further seen from equations (3a) and (3b) that a 
relatively large value of Ug-h as compared with fag, is 
an advantage since it leads to a large value of (h- 

The three-beam dispersion surface corresponding to 
the section L~ in Fig. l(a) will be similar to Fig. l(b) 
except that the two lines o and h will coincide, and the 
separation between the two horisontal branches will be 
equal to 2Un. The intersections between these two 
branches and the weak beam sphere, g, define the posi- 
tions of the split line g at the Kikuchi line intersection 
g, h. Assuming Ug and Ug-h to be weak compared with 
Un, one thus obtains for the separation of the two com- 
ponents of the split line 

(g= + U.. (4) 

These excitation errors can be measured on the photo- 
graphic plate. Consequently, equation (4) makes it pos- 
sible to determine a strong Fourier potential without 
knowing any other potentials. Equation (4) includes, 
however, in most cases a systematic error as will be 
shown below. 

A four-beam case 

Even when the intersection between two lines includes 
a third intersecting line, as in Fig. l(a), the contrast 
effects near the intersection can be explained qualita- 
tively by three beam considerations. However, close to 
the point of intersection all beams should be taken into 
account. For the section L~ in Fig. l(a), i.e. (h=0, the 
four beam case can be solved analytically as has been 
done by Fukuhara (1966), giving the four eigenvalues: 

~ , 2 = 1 ( ( +  Uh+ Ug-m 

+ V'((-Uh+Ug_m)Z+4(Um+U~) 2) (5a) 

~'3,4 = I ( ~ "  Ch_ Ug_r a 

+ ~(-~--+ Uh±-(Jg_~,)z+4(Um--Ug) z) (5b) 

where ( is equal to (g = (m" 
The corresponding dispersion surface is shown in 

Fig. l(c). We shall assume that the two maxima of the 
split line g originates from the two positions symmet- 
rical around the kinematical position, where in this 
case the gaps 4x-~2 and (3-~4 have minima. From 
equations (5a) and (5b) this is found to correspond to 
the excitation errors, 

( =  + (U h - Ug_ m) (6) 

which for a very weak coupling, Ug-m, is seen to give 
equation (4). The assumption that only two of the 
branches contribute appreciably to the weak beam con- 
trast is verified through four beam intensity calcula- 
tions. The contributions from the other branches are 
small near the positions given by equation (6), and 
show a slow variation with the diffraction condition. 
The positions of maximum weak beam intensity are 
therefore shifted negligibly from the positions given by 
equation (6). Provided the potential, Ug-m, is known, 
the strong potential can thus be determined by meas- 
uring the excitation errors on the plate. 

Examples 

An example of zero contrast is shown in Fig. 2 where 
the 422 line in a pattern from Si is seen to vanish due 
to the interaction with 202 and 220; a geometry which 
was discussed already by Pfister (1953). In this case 
~742 2 = 0 according to equation (3) and 

U220 =/U422((202 -Jl- U422) 
The 202 excitation error was photometrically measured 
to be (Xo 2 = (2.82 + 0.06) A -z giving 

U22o = (1.42 + 0.02) A -2 

which is 4.5 % above the tabulated value using a tem- 
perature factor B =  0.45. 

To test whether many beam effects give rise to a 
shift in the position of zero contrast, up to nine beam 
calculations were performed, and the calculated posi- 
tion was found to be close to the measured one. A re- 
finement on the 220 potential using the measured values 
of the excitation errors and assuming all potentials with 
higher indices to be known, gave the result: 

U220 = (1"362 + 0"006) A -2 

which corresponds to an atomic scattering factor for 
X-rays (Table 1) in accord with the tabulated value 
(International Tables for X-ray Crystallography, 1962). 
Calculations based on the second Bethe (1928) approx- 
imation resulted in a 220 Fourier potential 8 % higher 
than the tabulated value. 

Another example from Si is given in Fig. 3 showing 
the intersections between the line 57]', 022 and 351,022. 
The position of zero contrast for the line 57T does in 

Table 1. 220 structure factor in Si determined from many beam dynamic effects in Kikuchi line patterns (100 kV) 

Intersection 
422, 202 
57], 022 
(section L) 
571,022 
(section Lt) 

U220 (/~k-2) 
h 

2 nd Bethe fx eale fx tab 
Equation (6) approx. Equation (3) 9 beam (A -1) (A-l)  

1"48 1.42_+ 0.02 1.362 + 0.006 8.73 _+ 0.03 8"71 
0-87  1.57_+0.20 

1 "40 + 0"07 
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2.20 2.02 

7122 

Fig. 2. Transmission Kikuchi pattern from Si showing zero ~22 contrast outside the ~02 and ~20 bands. 100 kV. 

551 

g33 

Fig. 3. Transmission Kikuchi pattern from Si showing split lines and zero 37T contrast outside the 02~ band. I00 kV. 

[To face p. 315 
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this case appear at a very small value of ~022 resulting 
in a large uncertainty in the measurement of this quan- 
tity. From these measurements the 220 potential was 
determined to be 

U22o= (1.57 + 0-20) h -2 . 

The second Bethe approximation gave a far too low 
value, as seen in Table 1. 

The two maxima in the split 57T line at the position 
(o2~ = 0 were measured to occur at 

(5v~= + (1-17 + 0.07) A -2 

which from equation (6) gives 

U220 = (1"40 + 0"07) ,~-2 

when the temperature factor is put equal to B=0.45. 

Conclusions 

From the present study it can be concluded that non- 
systematic multiple beam dynamic effects in Kikuchi 
line patterns can be utilized for structure factor deter- 
mination. These effects which are commonly observed 
at any acceleration voltage in weak lines near their 
intersections with strong bands or at equivalent posi- 
tions in the pattern, can be localized and discussed by 
means of three-beam considerations. For quantitative 
structure factor determinations, however, corrections 
due to further beams have to be included in most cases. 
As distinct from the systematic many-beam case (Wa- 

tanabe, Uyeda & Fukuhara, 1968) the second Bethe 
approximation was found to be inadequate for this 
purpose. 

The accuracy of the present method will vary with 
the ratio between the structure factors involved and 
with the geometry of the interacting beams. Even in 
the more favourable cases the accuracy may be some- 
what poorer than in the Uyeda-Watanabe method. 

The main attraction by the present method is, of 
course, that one does not have to vary the acceleration 
voltage. It should also be pointed out that the use of 
non-systematic interactions introduces relations be- 
tween other Fourier potentials than those belonging to 
a dense row in the reciprocal lattice. 

The authors are grateful to Dr E. Nes for supplying 
the silicon samples. 

References 

BETHE, H. A. (1928). Ann. Phys. 87, 55. 
FUKUHARA, A. (1966). J. Phys. Soc. Japan, 21, 2645. 
GJONNES, J. & HOIER, R. (1969). Acta Cryst. A25, 595. 
International Tables for X-ray Crystallography (1962). Vol. 

III. Birmingham: Kynoch Press. 
PFISTER, H. (1953). Ann. Phys. 11,239. 
UYEDA, R. (1968). Acta Cryst. A24, 175. 
WATANABE, D., UYEDA, R. & FUKUHARA, A. (1968). Acta 

Cryst. A24, 580. 
WATANABE, D., UYEDA, R. & KOGISO, M. (1968). Acta 

Cryst. A24, 249. 

Aeta Cryst. (1971). A27, 316 

Die Messung von Schallgeschwindigkeiten in optisch anisotropen 
Medien mit dem Schaefer-Bergmann-Verfahren 

Voy H. KOPPERS 

Institut fiir Kristallographie der Universitiit zu K61n, Deutschland 

(Eingegangen am 1. April 1970) 

If the optical wave front is not normal to one of the principal axes of the indicatrix, diffraction of light 
in crystals, caused by ultrasound, is observed with maximum intensity when the incident beam is off the 
Bragg angle by an amount depending on double refraction. In a crystal plate of finite dimensions a 
standing ultrasonic wave also generates waves with propagation directions which are inclined to the 
normal of the plate, and interfere with the measurement of sound velocities by the improved Schaefer- 
Bergmann method. These difficulties are overcome by an appropriate choice of the angle of the incident 
light beam. Experiments with triclinic and trigonal crystals are reported. Formulae are derived for cal- 
culating the angles of incidence necessary for any measurements of sound velocities in crystals. 

1. Einleittmg 

Das Schaefer-Bergmann-Verfahren (Beugung von 
Licht an Ultraschallwellen) wurde in den letzten Jahren 
zu einer Pr~izisionsmethode zur Messung yon Schall- 
geschwindigkeiten und somit zur Bestimmung der 

elastischen Konstanten in durchsichtigen Festk6rpern 
entwickelt (Haussfihl, 1957). Der gr0sste Teil der bisher 
untersuchten Kristalle geh6rte h6hersymmetrischen 
Kristallklassen an. Die Messung der Geschwindig- 
keiten und die Berechnung der elastischen Konstanten 
erfolgt in diesem Fall am einfachsten, indem die Ge- 


